

International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA 6-8 May 2013

The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) Mission

Chris Ruf⁽¹⁾ (CYGNSS Principal Investigator), Scott Gleason⁽²⁾, Zorana Jelenak⁽³⁾, Stephen Katzberg⁽⁴⁾, Aaron Ridley⁽¹⁾ Randall Rose⁽⁵⁾, John Scherrer⁽⁵⁾ and Valery Zavorotny⁽⁶⁾

(1) University of Michigan; (2) Concordia University; (3) NOAA/NESDIS; (4) NASA LaRC; (5) Southwest Research Institute; (6) NOAA ESRL

For more information: http://cygnss-michigan.org

CYGNSS Team

University of Michigan

- Chris Ruf (PI), Derek Posselt (Deputy PI), Aaron Ridley (Instrument Scientist)
- Damen Provost (UM Project Mgr), Linda Chadwick (UM Business Mgr), Bruce Block (UM Technical Mgr)

• Southwest Research Institute

John Scherrer (Project Mgr), Randy Rose (Systems Eng), John Eterno (Spacecraft), Debbie Rose (Mission Ops)

Surrey Satellite Technology US

- Brian Johnson (DDMI)
- NASA Ames Research Center
 - James Chartres (Deployment Module)

Science Team

 Bob Atlas, NOAA; Paul Chang, NOAA; Maria Paola Clarizia (UM/NOC); James Garrison, Purdue U; Scott Gleason, Concordia U; Joel Johnson, Ohio State U; Stephen Katzberg, NASA LaRC (retired); Sharan Majumdar, U-Miami; Perry Samson, UM; Donald Walter, S. Carolina State U; Valery Zavorotny, NOAA; Zorana Jelenak, NOAA

CYGNSS Schedule

i d	Mission Timeline										
	2	013	2014	2015	2016	2017	2018	2019			
P	hase A	Phase B	Phase C		Phase D Launch	Phase E		Phase F			

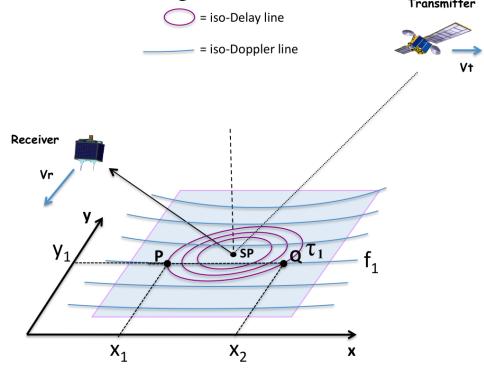
CYGNSS Science Goals & Objectives

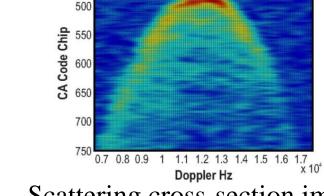
CYGNSS Science Goal

 Understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone (TC)

CYGNSS Objectives

- Measure ocean surface wind speed <u>in all precipitating conditions</u>, including those experienced in the TC eyewall
- Measure ocean surface wind speed in the TC inner core <u>with sufficient</u> <u>frequency to resolve genesis and rapid intensification</u>
- Limitations of current spaceborne ocean surface wind sensors
 - Traditional satellite remote sensing channels for ocean surface winds are significantly attenuated by intense precipitation
 - Traditional LEO polar orbiters have revisit times that are infrequent relative to time scale of rapid intensification phase of TC development
- CYGNSS Uses a new measurement technique and a new satellite mission architecture

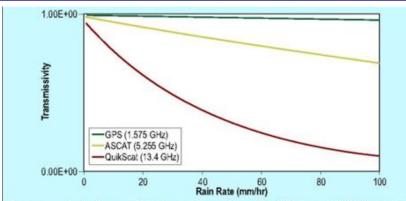


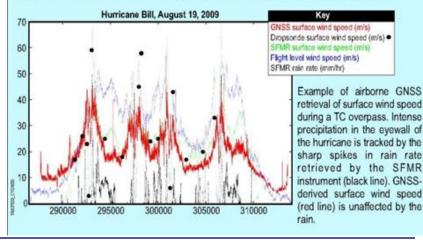


GNSS-R Bistatic Radar Quasi-Specular Surface Scattering

- GPS direct signal provides reference
- Forward scattered signal contains surface info

Scattering cross-section image measured by UK-DMC-1 spaceborne mission with variable lag correlation and Doppler shift



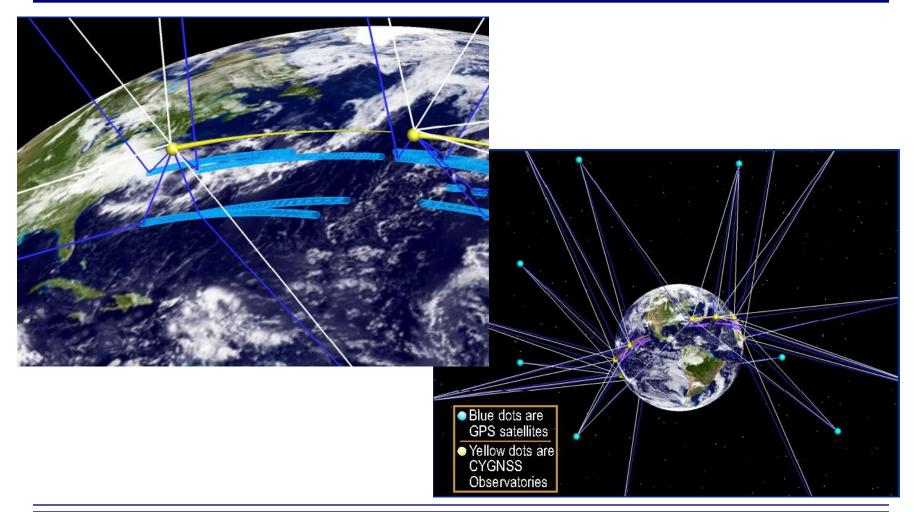


Performance in Intense Precipitation

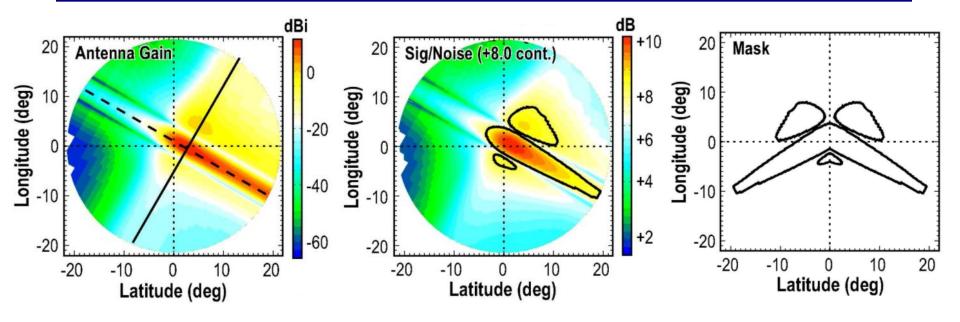
- One-way transmissivity through typical tropical storm (5 km freezing level) for: GPS (1.575 GHz), ASCAT (5.255 GHz), QSCAT (13.4 GHz)
- Airborne GNSS wind speed retrieval during overpass of Hurricane Bill on 19 Aug 2009. Strong rain bands (black) do not noticably affect the GNSS retrieved wind (red)

The one-way slant path atmospheric attenuation experienced by a GPS (green), ASCAT (yellow) and QuikScat (red) signal propagating through a typical tropical storm (5 km freezing level) as a function of surface rain rate. Rain has a negligibly small effect on the GPS signal, even at the highest rain rates. ASCAT is attenuated enough at the highest rain rates to severely impact its ability to retrieve surface winds. QuikScat signals are effectively blocked by heavy rain and cannot sense the surface at all.

GNSS Scientific Measurements

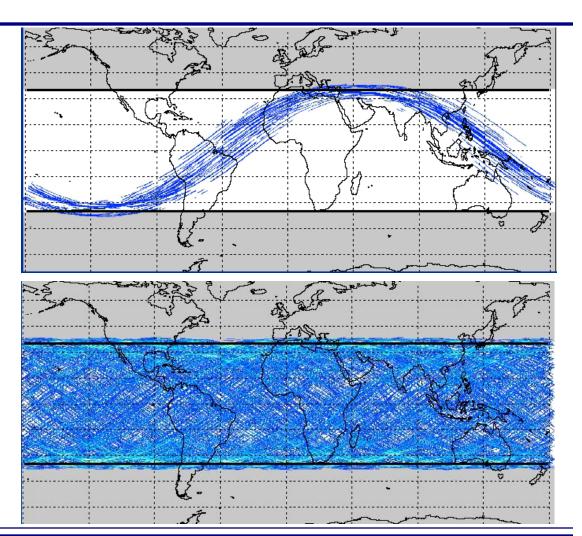

Science Objective	Scientific Measurement Estimated Performance			
	Observable	Physical Parameter		
Measure ocean surface winds under TC conditions	Precip	< 100 mm/hr (25 km footprint)		
	Windspeed uncertainty	Greater of 2 m/s or 10% of windspeed		
	Spatial resolution	Variable 25-50 km (ground processing)		
	Windspeed dynamic range	< 70 m/s (Cat 5)		
Measure ocean surface	Mean revisit time	4 hr		
winds in TC inner core with high temporal frequency	Earth coverage	> 70% coverage of all historical TC storm tracks		

CYGNSS Constellation


CYGNSS End-to-End Simulator

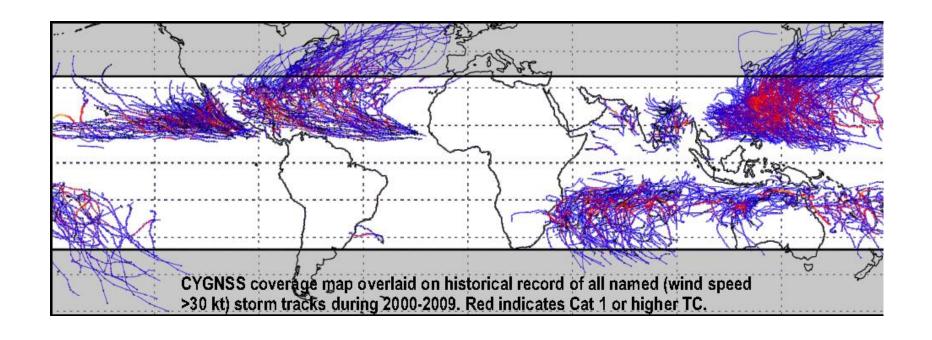
- Software model of all critical steps in the wind speed retrieval process:
 - Dynamic orbit propagators for GPS and CYGNSS constellations
 - Signal generation by GPS transmitter satellites
 - Free space propagation to the specular reflection point on the Earth surface
 - Bi-static forward scattering from the wind driven, roughened ocean surface
 - Receive antenna gain pattern projected onto the Earth surface
 - Link budget for received signal strength
 - Fading and thermal noise statistics of received signal
 - Accuracy, precision and resolution of Delay Doppler Map data product
 - Wind speed retrieval algorithm

Deriving Coverage Mask

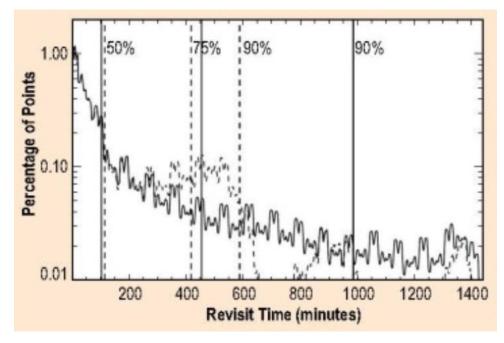

- (left) One of 2 nadir antenna patterns projected onto Earth (altitude 500 km, 60° rotation, 28° tilt)
- (center) SNR of received signal (10 m/s WS, 45° inc. angle)
- (right) +8 dB SNR contour with both antennas (meets WS retrieval uncertainty requirement)

CYGNSS Earth Coverage

- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35 deg orbit inclination



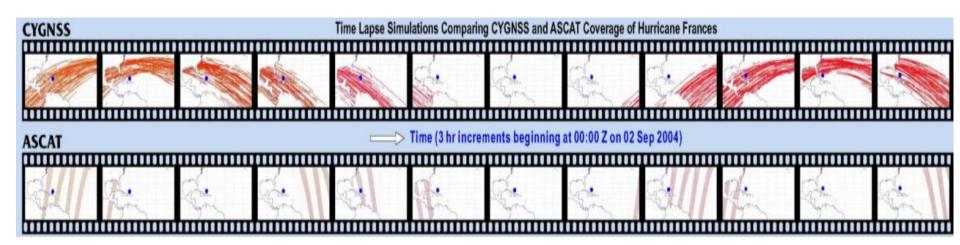
CYGNSS Historical Storm Track Overlay

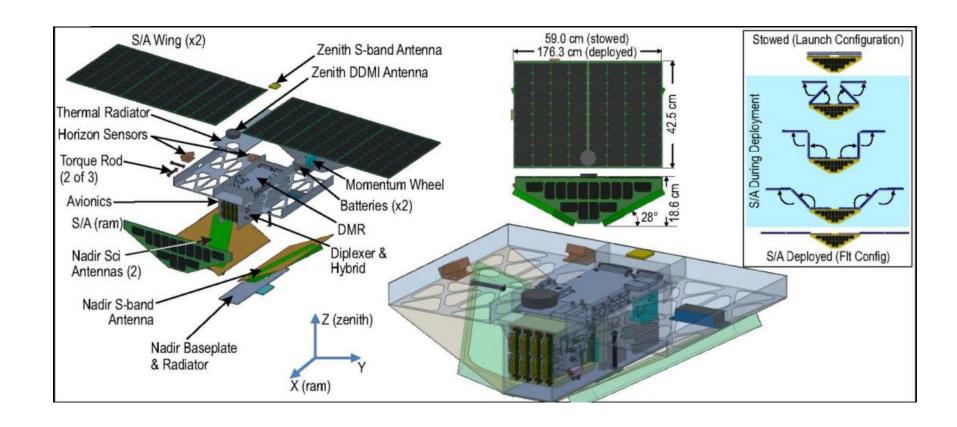


CYGNSS Revisit Time Requirement is 12 hr mean revisit

- Probability distribution of revisit time for all Earth samples within +/-35° (solid) and for samples of historical storm tracks (dashed).
- Revisit stats derived from PDF demonstrate 4 hr mean storm revisit and ~9 hr to revisit 90% of all storms

Revisit Statistics	Median	Mean	90% Cumulative
All Samples	1.6 hr	4.8 hr	14.4 hr
Storms Only	1.5 hr	4.0 hr	9.3 hr




Hurricane Overpass Case Study

- Time lapse simulation comparing CYGNSS and ASCAT coverage of Hurricane Frances just before landfall
- Snapshots of all samples taken in 3 hour intervals
- Hurricane inner core shown as large blue dot

CKGN8S

CYGNSS Observatory (exploded view)

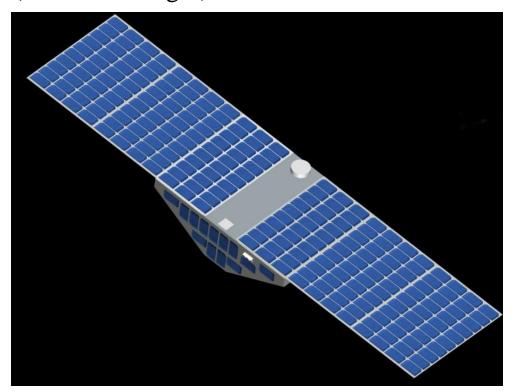
CYGNSS Observatory (1 of 8)

Observatory

• Power: 48.8 W (EOL margin 30.3%)

• Comm: 1.25 Mbps S-Band (31% link margin)

• Mass: 17.6 kg

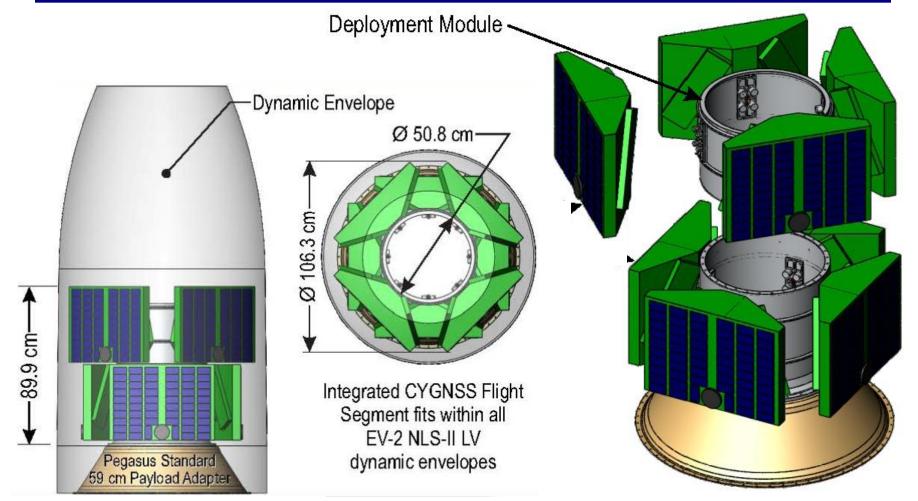

Orbit

• Altitude: 500 km

• Inclination: 35 deg

Launch

• 6 Oct 2016



Complete Flight Segment with Deployment Module

For more information: http://cygnss-michigan.org